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400005, India 
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Abstract. We investigate some aspects of accretion onto static black holes immersed in 
a uniform magnetic field. The Ernst metric is employed to find the ‘Keplerian’ angular 
momentum distribution and the efficiency of mass-to-energy conversion for a plasma and 
for test particles. Under almost all physically reasonable conditions for hydrodynamic 
accretion the effect of the magnetic field is small. However, for test particles the effect 
can be very important and the efficiency can approach unity. 

1. Introduction 

Accretion discs around massive black holes are the leading candidates for the power- 
houses of active galactic nuclei (for a review see Pringle 1981). A recently developed 
class of thick accretion disc models can provide for luminosities substantially above 
the Eddington limit and can also yield an attractive way to collimate and accelerate 
beams of radiation and matter (Lynden-Bell 1978, Paczydski and Wiita 1980 
(hereinafter referred to as PW), Jaroszyhski et a1 1980, Abramowicz and Piran 1980, 
Sikora and Wilson 1981). This may be of particular importance in view of the frequency 
with which small-scale jets are found in quasars and the nuclei of radiogalaxies (e.g. 
Readhead and Wilkinson 1980). 

These thick discs have their inner edges somewhere between the last stable circular 
orbit for particles, rms(= 3r, = 6m), and the marginally bound orbit, rmb (= 2r, = 4m, 
for a Schwarzschild black hole of mass m, and we use units where G = c = 1). They 
must exhibit a non-Keplerian angular momentum distribution in their inner regions 
(e.g. PW). Although magnetic fields will certainly be present around the black hole 
and in the accreted material (Bisnovatyi-Kogan 1979), very little attention has been 
paid to the question of how magnetic fields may affect the values of rmb and rms. We 
expect that if rmb can be decreased, then the size of the thick discs can be increased 
(PW) and the opening angle of the ‘funnels’ or ‘vortices’ can be reduced (Abramowicz 
and Piran 1980), thus increasing both luminosity and collimation. If rms can be reduced, 
then the efficiency of the conversion of rest-mass to energy may be expected to 
increase, thus partially counteracting the unfortunate tendency of fatter, more super- 
critical, discs to be less efficient in converting mass into radiation (PW, Jaroszydski et 
a1 1980). 
B Permanent address: Department of Astronomy and Astrophysics, University of Pennsylvania, Philadel- 
phia, PA 19104, USA. 
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2646 N Dadhich and P J Wiita 

In this paper we shall present a calculation based upon the idealisation of the 
Ernst (1976) static space-time which is supposed to describe a Schwarzschild black 
hole immersed in a uniform magnetic field, with IBmI<< 1, so that the mass-energy 
of the magnetic field is small compared with the mass of the black hole. Dadhich et 
al (1979, hereinafter referred to as DHV) have analysed the trajectories of charged 
particles in the Ernst metric and have shown that bound orbits always exist for realistic 
magnetic field strengths. We shall use the DHV effective potential to find the ‘Keplerian’ 
angular momentum per unit mass as a function of equatorial radius. We will then 
find analytic approximations for rms and rmb valid in the hydrodynamic plasma accretion 
and in the test particle limits, and will also present some numerical results comparing 
the efficiency of accretion at r,, with that for the pure Schwarzschild metric. 

The work most closely related to ours is that of Prasanna and collaborators (Prasanna 
and Varma 1977, Prasanna and Chakraborty 1981; for a review see Prasanna 1980) 
who have analysed the motion of charged particles in Schwarzschild and Kerr metrics 
with dipole magnetic fields added externally. Their results are qualitatively similar 
to ours, but they do not explicitly look for the Keplerian distribution of r,,, nor do 
they examine astrophysical constraints on allowed values of B or the charge of the 
accreted material, as we do in 0 3 below. Although our approach is much cruder than 
the detailed self-consistent solutions of the Einstein-Maxwell equations used to 
construct models of charged rotating discs (Prasanna and Chakraborty 1981), we trust 
that the new, albeit tentative, conclusions we draw are of some interest. Other authors 
have considered electromagnetic effects near discs to generate charged particle beams 
(Lovelace 1976) and also to extract energy from a Kerr black hole (Blandford and 
Znajek 1977, Znajek 1977). These interesting calculations are only tangentially 
related to ours, but certainly deserve further development and comparison with the 
recent observations of jets in galactic nuclei. 

2. Effective potential and ‘Keplerian’ angular momentum 

Ernst’s (1976) metric is given by 

ds2 = A 2 [ ( 1  - 2mr-’)-’ dr2 + r2  de2 - (1 - 2mr-’) dt2]+ [r2(sin2 @ ) / A  ’1 d<6’ (2.1) 
A = 1 + B2r2 sin’ 8 (2.2) 

@ = Br2(sin2 8)/A (2.3) 
where @ is the electric potential with respect to the Killing vector T~ (34) and B is 
the value (assumed constant) of the magnetic field along the axis. 

The effective potential can be easily found for motions confined to the equatorial 
plane, so with 8 = &r and the momentum in the 8 direction equal to zero we have 

V = A 2 ( 1  -2mr-’)[p2+ (A2/r2)(1 - e@)2]  

1 = AT2pr2 (sin’ 8)d +e@= + + e @  

(2.4) 
(DHV, equation (13)) for a particle of mass p and charge e, where the angular 
momentum is given by 

(2.5) 
(the A-2 factor was inadvertently dropped in DHV, equation (10)). 

We calculate the angular momentum distribution characterised by a balance 
between rotational, gravitational and electromagnetic forces (but neglect radiation 
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losses) in analogy with the Keplerian distribution. This function lk(r) can be found 
by setting dV/dr = 0. After some algebra this leads to a quadratic equation whose 
correct physical root is 

JI={eB Ar-[ (eB Ar)2-D(r2A’ AA-1+m)]1’2}D-1 (2.6) 

A = ( 1  - 2mr-’) A’=2B2r D =2Ah’ A+h2mr-2-Ah2r-1. (2.7) 

where we have used the notation 

Further, we have divided equations (2.4) and (2.5) through by p2  and p respectively, 
so that in (2.6) and all subsequent equations we are referring to the specific potential, 
momentum, charge, etc; V, = VI@’, 1, = lk/p,  e, = e/@, JIs = +/p. We shall henceforth 
ignore the subscript ‘s’. 

The marginally bound orbit can be found by setting V = 1. The binding energy 
then vanishes, as the binding energy b per unit mass is given by 

(2.8) 
The marginally stable orbit is found by setting dlk/dr = 0. Unfortunately, neither of 
these equations can be solved analytically, so we shall resort to expansions in two 
regimes of interest and shall then perform numerical calculations to provide values 
where neither expansion is valid. 

We shall show below that under reasonable physical conditions in active galactic 
nuclei we would never expect IBmI to exceed Thus the magnetic field is weak 
(in geometrical units), as required. Under the circumstances of hydrodynamic 
accretion, where one has an essentially neutral plasma (only slightly affected by charge 
separation), one also has that leBI<< 1. (But see Lovelace (1976) or Blandford and 
Znajek (1977) for cases where this may not hold.) The other possibility, of less 
astrophysical interest but still of intrinsic importance, is that of test particles. Then 
we can have e >> 1 and the possibility of eBm >> 1. 

1 (or e@<< 1 where r is 
O(m)).  Note that under these circumstances we expect rmb=4m, rmb=6m, and the 
last circular photon orbit, where 1 2  V reach maxima, rph = 3m, while Z(rmb) = 4m,  
1(rms) = J12m,  b(rms) = b,, = 1 - J 8 / 9 ,  and we are interested in the amount and 
direction of the deviation from these values as functions of B and e. Expanding 
equation (2.6) and inserting it into (2.5) we find, to lowest appearing orders in Bm 
and eBm, that 

l(r  = 4 m )  = 4 m ( l  +80BZm2-4eBm)  ( 2 . 9 ~ )  

V(r = 4 m )  = 1+ 128B2m2-8eBm (2.96) 

b(r  =4m)  = -64B2m2+4eBm ( 2 . 9 ~ )  

l(r = 6 m ) = J z m ( 1 + 2 0 4 b 2 m 2 - J l ; ? e B m )  ( 2 . 1 0 ~ )  

V(r = 6 m )  = 8/9+(512/3)B2m2-(16JE/9)eBm (2.106) 

(2.10c) 

b = 1 - 

First consider hydrodynamic flow with Bm << 1 and eBm 

and that 

b(r = 6 m )  = 1 - d G ( l  + 9 6 B 2 m 2 - f i e B m ) ;  
furthermore 

12B2mZ 
rPh=3m(l+ 1 -51B2m2)‘  (2.11) 
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Note that if Bm >e/16  then equation ( 2 . 9 ~ )  tells us that rmb>4m, and the binding 
energy is already negative at r = 4m. Equation ( 2 . 1 0 ~ )  shows that if Bm > &e/48 
then the binding energy at r = 6m is less than it would be in the Schwarzschild case, 
and we therefore anticipate less efficient accretion. As both e and Bm are assumed 
to be small, we see that the changes brought by the magnetic field are small in either 
the positive or negative (if Bm <e/16  or J3e/48) direction. Although we do not 
find the actual values of rms and rmb, we expect them to differ by O[m x max (Bm, e)] 
from their Schwarzschild values. 

Now let us consider the test particle case. Although Bm << 1 is still presumed valid, 
we can easily have e > 1 or even e >> 1 (for an isolated proton e / k  = 1.112 X lo1' in 
geometric units). In fact, we shall assume eBm >> 1 and then perform an expansion. 
We now see that r = 3m causes no real divergence for 1 or V, but rather all of the 
interesting values lie close to r = 2m, the event horizon. Expanding equation (2.6) 
under these circumstances yields 4 = [2eB(r - 2m)]-'m to the lowest order, so that 

Ik ( r ;  e, B )=[2eB( t -2m) ] - 'm +eBr2. ( 2 . 1 2 )  

Differentiating (2.12) and setting the result equal to zero gives 

r,, = 2m[ 1 + (4&Bm)-'] 

I(rms) = (4eBm +J\/2)m 

V(rms) = 3(8fieBm)-' 

b (rms) = 1 - A ( 8 f i e B m  )-1'2. 

( 2 . 1 3 ~ )  

(2.136) 

( 2 . 1 3 ~ )  

(2.13d) 

We can also solve for the value of rmb in this approximation: 

Tmb = 2mE1-k ( 8 e B n 1 - ~ ] .  (2.14) 

For test particles we see that rms is quite close to 2m if eBm is large, and consequently 
rmb will be pushed even closer to the event horizon. It is intereting to note from 
equation (2.13d) that even though rms is close to rmb the efficiency of accretion can 
approach unity. Finally we note a general property of equation (4)  is that V(r  = 2m) = 
0, so in this case there is a steep spike in the potential curves for 2m < r C rmb. 

3. Physical constraints on the field strength and charges 

The conversion between the dimensionless variable Bm and physical units for the 
magnetic field is 

( 3 . 1 )  

As DHV point out, their critical value for the field, above which no bound orbits exist, 
is Bm =0.101, and that corresponds to an outrageously high field of -10" G even 
for a supermassive black hole of 108Mo. We now proceed to set a more reasonable 
constraint on Bm by demanding that the pressure PB due to the magnetic field does 
not exceed the total (gas plus radiation) pressure in the accretion disc near the cusp. 
(An even more stringent limit, which could be reasonably argued for, is that PB < P,,, 
alone.) 

c4  
G M  

BG = T B m  = 2.36 x 10'9(M,/M)(Bm) G. 
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To estimate values for the pressure in the disc we use the recent models of Wiita 
(1982) for the physical properties of thick PW accretion discs. It turns out that the 
largest pressures are generated for his n = 3 polytropic models and are given by 

Pmax(r) = 5.25 X 1032Z;4 (1 +Z;1)-3U4(r) dyn cm-' (3.2) 

where U(r) = 2[ ( r  - l)-' - (R - l)-'], R = ( r 2  + z o )  , zo is the half-thickness of the 
disc, given by equation (2) of Wiita (1982), and 2, is the ratio of radiation pressure 
to gas pressure at the surface of the disc. All the lengths are in units of m. When we 
examine all the physically allowed models discussed in that paper we find that maximal 
values of U near the cusp are -0.034 and that Z,  can only vary between -3 X 10' 
and -3  x lo3 for large black holes, M >  106Mo. Inserting the lowest value for 2, 
and the highest for U into equation (3.2) tells us that for rmb < ro G r,, 

2 1 /2  

Pmax(ro) < 7 x 10l6 dyn cm-'. 

BG 1.3 X lo8 G or IBmI < 5.6 X 10-'2(M/M~). (3.4) 

(3.3) 

Now demanding PB = B&/S.rr < P,,, implies 

If PB < PG is felt to be a preferable constraint, the result is reduced by another factor 
of ZS''*. Other polytropic indices produce limits on Bm more severe by at least a 
factor of five. 

Thanks mainly to the constraint that the disc mass be less than the black hole 
mass, Wiita (1982) finds that the highest mass for which his models are valid is less 
than 107MQ. Inserting this value into equation (3.4) provides the self-consistent limit 
of 

I B ~ I  < (3.5) 

Although one could conceivably create higher-luminosity discs around black holes 
with M - 108Ma, the disc would have to be at least as massive as the central object; 
(3.5) is unlikely to be exceeded by more than an order of magnitude even in such 
non-self-consistent cases. In actuality, we expect that IBmI will be far less than 
which relied upon extreme values of 2, and U. For more typical values of these 
parameters we find lBml< lo-'. 

The value of the charge to be assigned is somewhat more arbitrary. We expect 
the plasma to be neutral on the whole, but complex plasma-dynamic effects should 
allow for some charge separation near the black hole so that the equivalent of a 
non-zero value of e is likely. But, under most circumstances we expect this effective 
charge/mass ratio to have a magnitude less than unity (in geometrical units). As the 
magnetic field structure has been so highly idealised, it does not seem worthwhile to 
attempt a detailed calculation for the effective charge, as our results cannot give more 
than a qualitative indication of what really goes on in the astrophysical setting. We 
resolve the uncertainty over what values of e to choose by picking a very wide range 
of values in calculating the numerical results. 

Nevertheless, it is possible to argue more quantitatively that collective plasma 
effects, and therefore fluid behaviour, will dominate the motion in thick, supercritical 
accretion discs. Following Prasanna (1980) we assume that the plasma is adequately 
treated in the test particle approximation if the collision frequency of the particles is 
much less than the gyrofrequency, or, equivalently, that the mean free path of the 
particles is greater than the effective field variation length scale IB/(dB/dr)l. In our 
metric, dB/dr = 0 so this condition is never likely to be satisfied and the fluid approach 



2650 N Dadhich and P J Wiita 

is clearly to be preferred. But if we become more conservative and compare the mean 
free path with the field variation obtained from a dipole field, we can use Prasanna’s 
result (his equation (7.7)) that if 

N < 5.5 T2,  (3.6) 
where N is the particle number density and T the temperature in the plasma (in CGS 
units), then the test particle approximation may be valid. Except for n = 0 polytropes, 
the smallest values of the ratio N / T 2  occur on the surface of the disc. Thus we 
combine Wiita’s (1982) equations (9) and (10) for the surface temperature and density 
to obtain 

NIT’> 5 x 108(M/Mo)-4’152;16’15Q2’15(r). (3.7) 

Because -0.03 < Q2’15(r) < - 0.58, we see that even for extreme, non-self-consistent 
models (M = 108Mo, 2, = lo4) we have N/ T 2  > 10, and, more typically (e.g. M = 
106Mo, 2, = lo3), N / T 2  > 300. Inside the disc this ratio soars to greater than 104-106, 
so that for any thick disc we must use the fluid approach and the effective e value 
should be small. However, for sufficiently sub-critical accretion it is possible for (3.6) 
to be satisfied, and then extremely high efficiencies could be allowed. 

4. Discussion 

In figure 1 we display lk and V as functions of r for three sets of (B, e )  values. For 
Bm = and e =4.8 x lo-’’ we have 1 >>Bm >>e/16, so that we expect increases 
in rmb, rms and a decrease in b with respect to the Schwarzschild parameters; although 
these changes are pesent, they are too small to be discerned on the scale of the figure, 
so these broken curves are essentially the same as for the non-magnetic case. These 
very minor shifts are typical for the standard astrophysical situation. If e CO, then 
the efficiency is invariably decreased. 

For Bm = lo-’ and e = 1 we have a situation where neither of our expansions is 
really applicable. But, since Bm < e/16 < 1, we expect that rmb and r,, would decrease 
while b would increase. As can be seen from the figure, this is so: rmb=3.78m, 
rms = 5.73m and the binding energy at rms is some 7.9’/0, implying an efficiency about 
38% higher than that for the Schwarzschild case. However, this field is too strong to 
be physically justified. 

Finally we have plotted results for the case of a weak field, but high e (i.e. test 
particle): Bm = e = lo9. Here eBm > 1 and we expect our second expansion to 
be nearly valid. We find rmb=2.05, rms= 2.06 and b =0.810, a very substantial 
(13-fold!) increase in the conversion of mass to energy. Our results for large eBm 
are qualitatively very similar to those of Prasanna and Varma (1977) even though 
they use a dipole field. We refer the reader to their extensive tables and figures and 
their discussion of particle orbits for more details. In particular, in these cases we 
also find a second maximum in the effective potential that is greater than unity, 
implying that particles can be trapped between rmb and an outer turning point which 
is located at r > 20m in all cases. For our calculations of significance to actual accretion 
discs, these secondary humps in the potential do not always cross unity, and even 

pressure and viscous forces should certainly be able to push the plasma over the hump, 
enabling it to approach from large radii and still be swallowed by the black hole. 

SxJhen ---__ thexi ----, rln --, the _-*- -^--I_ m n c t  negp t j - :p  *_-  y?!zp nttni-p+ fer + p  ~ ~ ~ + ~ ~ g  pnprgy Z-T-?!! thnt 
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Figure 1. The effective potential V (in units of G ~ )  and the Keplerian angular momentum 
distribution I (in units of w ) .  The three cases shown are: Bm=10-2, e = l  (full curves); 
Bm=10-4, e=4.8~10-'~ (broken curves); Bm=10-', e=lx109 (chain curves). The 
second case is indistinguishable from the pure Schwarzschild metric on the scale of this 
drawing. Note that for the last case [/lo0 instead of I is plotted and also that on this 
scale all the potential curves drop precipitously to zero at r = 2  (not shown for clarity). 

From equations (2.5) and (2.6) we see that lk becomes imaginary as r + 03, but even 
before that, for r > 1/B, dl/dr < 0, implying that the disc cannot be stable. Physically 
this means that the assumption that the magnetic field is essentially uniform over a 
tremendous distance (>104m) is untenable, and we must allow for a decrease in the 
field at least as rapid as l / r  at large radii for a self-consistent solution. 

Table 1 lists the values of rmb, l,,, rms, b,, and Ab = (b,, - bsch)/bsch for values of 
Bm from lo-'' to to -10". It is clear that at sufficiently 
large eBm the efficiency of accretion can approach unity. However, when E m  < low4 
and e < 1, which should be relevant to accretion around supermassive black holes, 
the changes in efficiency never exceed 0.6%. We have also performed calculations 
that mock up a field that is not intrinsic to the geometry, i.e. we set A = 1 in the metric 
(2.1) but retain it in the electric potential (2.3). This implies that the field is being 
carried in by the accreted material, which is probably what happens in the physical 
situation. Of course we are still neglecting the real interaction of the field with the 
matter, which tends to compress the former away from the uniform structure assumed. 
However, since the physical constraint is applied near ro, and the field should be near 

and of e from 
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Table 1. Parameters for marginally bound and marginally stable orbits. 

1.00 
l.OO(9) 
1.1 l(18) 
4.80(-10) 
1 .OO( -2) 
1.00 
l.OO(2) 
l.OO(4) 
l.OO(9) 
1.11 (18) 

4.80(-10) 
1.00(-2) 
1.00 
l.OO(2) 
l.OO(4) 
l.OO(9) 
1.11 (18) 

4.80(-10) 
1.00(-2) 
1 .OO(O) 
l.OO(2) 
l.OO(4) 
l.OO(9) 
1.1 l(18) 

1.38(-34) 
4.80(-10) 
4.80(-10)$ 
1 .OO(-2) 
1 .oo 
1.00$ 
l.OO(2) 
l.OO(4) 
l.OO(9) 
1.11(18) 

4 - 0(-10) 
3.058 279 
2+0(-16) 
4+0(-16) 
4-0(-10) 
3.999 9998 
3.999 9994 
3.996 8099 
2.047 6.584 
2 + O(-20) 

4 + 0(- 12) 
3.999 9998 
3.999 9684 
3.996 8099 
3.753 4894 
2 + 0(-6) 
2 + 0(-24) 

4.000 0055 
3.999 9735 
3.996 8155 
3.753 4926 
2.345 0897 
2+0(-10) 
2 + 0(-28) 

4.054 6859 
4.054 6859 
4.013 0634 
4.051 0844 
3.783.9188 
3.7606017 
2.345 4126 
2.004 9772 
2+0(-14) 
2 + 0(-32) 

6 -0(-10) 
3.982 675 21 
2 +5.2(-9) 
6 + 0(-16) 
6-0(-10) 
5.999 999 91 
5.999 999 43 
5.999 982 14 
2.055 654 34 
2 +5.2(-11) 

6 + 0(-12) 
6.000 000 44 
5.999 999 90 
5.999 981 85 
5.841 397 47 
2.000 577 18 
2 + 52-13)  

6+0(-8)  
5.999 966 27 
5.999 948 25 
5.841 373 63 
2.439 917 75 
2.000 005 59 
2+5.2(-15) 

5.733 992 39 
5.733 992 39 
6.044 326 51 
5.734 OS7 18 
5.638 201 88 
5.870 287 88 
2.440 266 30 
2.005 753 72 
2.000 000 06 
2 + 5.1( -17) 

3,464 102 
3.522 333 
4.448(8) 
3.464 102 
3.464 102 
3.464 101 
3.464 090 
3.462 905 
4.343(1) 
4.448(10) 

3.464 102 
3.464 102 
3.464 090 
3.462 905 
3.375 860 
4.004(3) 
4.448112) 

3.464 109 
3.464 097 
3.462 912 
3.375 866 
7.277 229 
4.000(5) 
4.448(14) 

3.530 255 
3.530 255 
3.451 585 
3.528 992 
3.432 165 
3.365 692 
7.275 317 
4.033(2) 
3.998(7) 
4.446(16) 

0.057 190 96 
0.215 474 65 
0.999 941 06 
0.057 190 96 
0.057 190 96 
0.057 190 99 
0.057 194 22 
0.057 517 16 
0.810 431 46 
0.999 993 93 

0.057 19096 
0.057 190 99 
0.057 194 22 
0.057 517 61 
0.086 163 09 
0.980 388 20 
0.999 994 11 

0.057 19005 
0.057 193 32 
0.057 516 23 
0.086 162 33 
0.516 891 46 
0.998 034 44 
0.999 999 94 

0.048 373 18 
0.048 373 18 
0.053 740 20 
0.048 710 97 
0.078 642 46 
0.082 922 88 
0,516 402 83 
0.938 144 58 
0.999 803 315 
0.999 999 99 

O(-9) 
2.767 634 

16.484 251 
-0(-14) 

5.7 l(-9) 
5.71(-7) 
5.71(-5) 
5.70(-3) 

13.170622 
16.485 178 

-0(-10) 
5.69(-7) 
5.71(-5) 
5.70(-3) 
0.506 586 

16.142 363 
16.485 271 

-1.58(-5) 
4.12(-5) 
5.69(-3) 
0.506 573 
8.037 993 

16.450 913 
16.485 280 

-0.154 376 
-0.154 376 
-0.060 342 
-0.148 274 
0.375 086 
0.450 152 
8.029 449 

15.403 722 
16.481 842 
16.485 281 

t Numbers in parentheses are powers of ten. 
$ Calculated for an external magnetic field ( A  = 1 in the metric). 

its maximum there, our assumption is not so bad, at least as far as the efficiency is 
concerned. The differences between the values of the quantities given in the table 
calculated in this fashion and those from our primary approach never differed by more 
than 1 part in lo5 except for B = lo-' and e < 1. Two such extrinsic field cases are 
also listed in table 1. 

The above manoeuvre does not show how the field will actually be carried towards 
and, presumably, concentrated around the black hole by the infalling material 
(Bisnovatyi-Kogan 1979), and our simple form for the field is a major weakness of 
our approach. Very complex, but self-consistent calculations, along the lines of 
Prasanna and Chakraborty (1981), but extended to thick discs, are what are really 
required, and Prasanna (private communication) is attempting them. Other limitations 
are our restricting our analysis to the equatorial plane and our consideration of only 
the 'Keplerian' angular momentum distribution, as thick discs must have non- 
Keplerian distributions. However, the efficiency should still be determined by the 
Keplerian value of I(ro) on the equator (PW). We have also neglected radiation losses 
which could be important in the test particle situstion, but only strengthen our result 
for the plasma case. Despite these approximations, we are confident that our primary 
result-that the changes in accretion efficiency due to a physically allowed magnetic 
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field in an accretion disc are small-is essentially valid. Thus, if one is searching for 
a way to increase the luminosity of a thick disc significantly, or to improve the 
collimation of the beams emerging from one, this particular effect of magnetic fields 
upon accretion is not likely to be the way to go about it. 
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